Visibility analysis for planning landslide alert systems with webcams

Florian Albrecht(1), Mateja Jemec Auflič(2), Daniel Hölbling(1)

1) Department of Geoinformatics – Z_GIS, University of Salzburg,
2) Geological Information Centre, Geological Survey of Slovenia – GeoZS,

ReSyLAB 2017, 12.10.2017
Ljubljana, Slovenia
Opportunity: Webcams

https://www.panomax.com/
Content

- Landslide alert vs. early warning
- Technical challenges of a landslide alert system
- Concepts, materials and methods
 - Visibility analysis & visually relevant parameters
 - Study area and data
 - Visibility analysis model
 - Results
- Discussion and conclusion
Landslide alert vs. early warning

- Enables getting informed about a specific landslide location as soon as possible after the event occurred
- Allow fast reaction

- Enables preparation for action when the weather conditions make the occurrence of landslides very likely
- Allow in-time preparation

Complementing systems
Technical challenges of a landslide alert system

- Approach: Analyse the components’ technical feasibility

Image Information extraction

- Applying Earth Observation concepts to webcam images

Achievable webcam coverage

- Model the coverage of webcam constellations with visibility analysis

Identify relevant susceptible areas

- Identify location as susceptible when conditions of known landslides are found

Step 1: Estimate the viewing capabilities of an installed webcam for targeting landslides
CONCEPTS, MATERIALS AND METHODS
The look and feel of visibility
Visually relevant webcam parameters

- Webcam field of view determined by:
 - Viewing height \(h \),
 - Vertical view angle \(\alpha \),
 - Horizontal view angles \(\beta \) and \(\beta_2 \) (account for webcam turning capability).
Visually relevant landslide parameters in relation to webcam location

- Landslide size in the webcam’s field of view depends on:
 - Landslide surface area A,
 - Its inclination γ and orientation δ to due North,
 - Webcam’s orientation angles ϵ and λ towards the landslide,
 - Distance d between landslide and webcam.
Study areas and data

- **Study area**: Montafon, Vorarlberg, Austria
- **Webcam**: Skiing resort „Silvretta“ at https://silvretta-montafon.panomax.com/nova-stoba
- **Topography data**: DEM (10m; derived from airborne laser scanning)
- **Ancillary**: Worldview-2 (0.5m; 29.08.2015)
Visibility Analysis model

- **Main output:**
 - Ratio-adjusted ground resolution (per 1°-by-1° tile of webcam view)

- **Visualisations:**
 - Map view
 - Augmented reality (AR) view
Results (1/2)

- Background image
- Ground resolution map

AR view

Map view

Greys: 1 - 2 m
Yellows: 2 - 5 m
Reds: 5 - 10 m
Pinks: > 10 m

< 1 m

DEPARTMENT OF GEoinformatics - Z_GIS
Results (2/2)

- Background image
- Ground resolution map

AR view

Map view

DEPARTMENT OF GEOINFORMATICS - Z_GIS
Discussion and Conclusion

- Discussion and Conclusion
 - A webcam’s effective coverage for identifying landslides can be mapped
 - Model needs refinement
 - Address pixels of webcam image and cells of DEM instead of coarse 1°-by-1°-tiles

- Further steps:
 - Information extraction from webcam images
 - Find optimal webcam constellations for susceptible areas
 - …
Acknowledgments
This research has been supported by the Austrian Research Promotion Agency FFG in the Austrian Space Applications Program (ASAP 11) through the project Land@Slide (contract n° 847970). Thanks to Damian Taferner for fruitful discussions.